
Development of Secondary Archive System

at Goddard Space Flight Center Version 0 Distributed Active Archive Center

Mark Sherman, John Kodis, Jean-Jacques Bedet, Chris Wacker

Hughes STX

7701 Greenbelt Road, Suite 400

Greenbelt, MD 20770

{sherman, kodis, bedet, wacker }@daac.gsfc.nasa. gov

301-441-4285 Fax (301) 441-2392

Joanne Woytek, Chris Lynnes
NASA/GSFC

Greenbelt Road

Greenbelt, MD 20771

{joanne,lynnes } @ daac.gsfc.nasa.gov
301-286-4418

Abstract

The Goddard Space Flight Center (GSFC) Version 0 (V0) Distributed Active Archive

Center (DAAC) has been developed to support existing and pre Earth Observing System

(EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing

System Data and Information System (EOSDIS) concepts. To ensure that no data is ever

lost, each product received at GSFC DAAC is archived on two different media (VHS and

Digital Linear Tape (DLT)). The first copy is made on VHS tape and is under the control

of UniTree. The second and third copies are made to DLT and VHS media under a

custom built software package named "Archer". While Archer provides only a subset of

the functions available with commercial software like UniTree, it supports migration

between near-line and off-line media and offers much greater performance and flexibility

to satisfy the specific needs of a Data Center. Archer is specifically designed to

maximize total system throughput, rather than focusing on the turn-around time for

individual files. The Commercial Off the Shelf Software (COTS) Hierarchical Storage

Management (HSM) products evaluated were mainly concerned with transparent,

interactive, file access to the end-user, rather than as a batch-oriented, optimizable (based

on known data file characteristics) data archive and retrieval system. This is critical to

the distribution requirements of the GSFC DAAC where orders for 5000 or more files at

a time are received. Archer has the ability to queue many thousands of file requests and

to sort these requests into internal processing schedules that optimize overall throughput.

Specifically, mount and dismount, tape load and unload cycles, and tape motion are

minimized. This feature did not seem to be available in many COTS packages. Archer

also utilizes a generic tar tape format that allows tapes to be read by many different

.systems rather than the proprietary format found in most COTS packages. This paper

discusses some of the specific requirements at GSFC DAAC, the motivations for

implementing the Archer system, and presents a discussion of the Archer design that
resulted.

301

Introduction

One of the critical components within the DAAC's Data Archive and Distributed System

(DADS) is the HSM system. Several years ago, UniTree was chosen as the best

candidate to satisfy the GSFC DAAC's requirements providing both the basic HSM

functions and the device drivers for the planned robotic devices. After months of

integration and customization, UniTree reached some stability but it fell short of the

GSFC DAAC throughput requirements [1], and was limited in the configurability of the

archive, retrieval, and caching systems based on data-specific characteristics; e.g., size,

volume, likely reuse, multiple versions, etc. It also became apparent that this product

and other similar commercial products were not fully suited for this domain of

application.

Archer is an in-house software package that was developed by the GSFC DAAC to

provide management of secondary and tertiary backup copies of all datasets stored in the

archive. Archer was developed to remedy some of the major drawbacks of HSMs, such

as UniTree, in handling a data (vs. file) archival system. In particular its design was kept

simple and tailored to handle data requests with large number of files and varying files

characteristics. Performance was a key consideration in the design of the system and its

highly parallel distributed architecture allows the system to be scaled to much larger

archives. This paper starts by presenting an overview of the functionality needed for the

GSFC DAAC to be a fully operational Data Center. The overall hardware architecture to

meet the needs of the GSFC DAAC is described, followed by a discussion on what led

the GSFC DAAC to the development of Archer. The architectural design of Archer is

presented with its main features. Finally, the status, lessons learned, and future work are

briefly described.

GSFC DAAC functions and architecture

The GSFC DAAC can be viewed as composed of three main components which are a

Product Generation System (PGS), an Information Management System (IMS), and a

Data Archive and Distribution System (DADS). The PGS and IMS are respectively

associated with the production of higher level products and the catalog holdings searched

and browsed by researchers. The DADS controls the overall processes of the ingestion of

new data and the distribution of data requests. The migration between near-line and on-

line devices is handled by both UniTree and Archer, however only Archer has the full

capability to migrate media between near-line and off-line. For historical reasons,

UniTree is currently responsible for the primary archive. Secondary and a tertiary

archives, under the control of Archer, use respectively DLT and VHS as archive media.

The Metrum RSS-600 Automated Tape Library (ATL) with 5 RSP-2150 drives and 600

VHS cassettes (for a total capacity of up to 8.7 TB) is shared by UniTree and the tertiary

archive. Most tapes in the ATL and four of the five VHS drives are controlled by

UniTree. The secondary archive is composed of three DLT 7 cartridge stackers. While

302

UniTreeandthetertiaryarchivearerunonanSGI ChallengeL, thesecondaryarchive is
executedonanSGIChallengeS.

Two SGI 4D/440workstationsarebeingusedto testnew versionof the DADS, IMS,
Archer softwareandnew releasesof UniTree. Havingdedicatedtestmachinesis very
importantto avoid affectingtheday to dayoperationat theGSFCDAAC. SeveralSGI
machines are also used to process Pathfinder Advanced Very High Resolution
Radiometer(AVHHR) landproductsandto performQuality Assessment(QA) on new
productsgenerated. Figure 1 and 2 and Table 1 illustrate someof main platfonr_s
acquiredby GSFCDAAC alongwith their specificfunctions.

GSFC VO EOSDIS et LAN

Figure 1 GSFC DAAC 1996 Configuration as of 2/28/96 (1 of 2)

303

Figure2 GSFCDAAC 1996Configurationasof 2/28/96(2 of 2)

Machine name

EOSDADS

EOSBACK

EOSDATA

EOSDADS2

EOSTEST2

Function

run UniTree & tertiary
archive

run secondary Archive

run IMS and Oracle

Database

!run ingestion & distribution

test software in acctest &

systest

Hardware description

SGI Challenge L, 256 MB memory

4 R4400 CPUs (150 Mhz)

- Metrum RSS600 automatic library

- 32 GB UniTree stage disks

SGI Challenge S, 64 MB memory

1 R4400 CPU (150 Mhz)
- DLT stackers

SGI Challenge L, 256 MB memory

4 R4400 CPUs (250 Mhz)

- 24 GB ftp stage disks

- 275 GB anon_,mous ftp

SGI Challenge XL, 512 MB memory

4 R4400 CPUs (200 Mhz)

- 36 GB ingest staging disks

- 61 GB distribution staging disks
- 8ram drives

- 4ram drives

- 3480 drives

SGI 4D/440 VGX, 256 MB memory

4 R3000 CPUs (40 Mhz)

304

EOSTEST

EOSQA

test dads software & new

version of UniTree

run data product QA

SGI 4D/440, 128 MB memory

4 R3000 CPUs (40 Mhz)

- 8 GB UniTree cache

SGI indigo 2, 160 MB memory

1 R4400 CPU f150 Mhz)

Table 1. Hardware at the GSFC DAAC

Criteria for the development of a secondary archive

This paper now focuses on issues faced by the GSFC DAAC during the last two years

and some of the specific requirements that led to the development of a secondary archive

system.

Over the years; the GSFC DAAC has faced problems with the HSM system UniTree and

the archive media (VHS tapes and 12" WORM optical platters). In particular, UniTrce

did not work very well when 12" WORM optical drives were working concurrently with

the VHS tape drives. Unitree also did not satisfy the general throughput requirements.

and proved difficult to configure based on evolving data characteristics and data request

profiles. While some issues have been resolved, others still remain open. Additionally,
occasional loss of data due to media failure, UniTree software failures, along with a

requirement from the Sea-viewing Wide Field of View Sensor (SeaWiFS) project

necessitated the need to keep a second copy of all products. It became apparent that there

was an urgent need for a secondary data archive system that would hold a backup copy of
all data received at the GSFC DAAC, would take over in case the primary system failed,

and if successful in increasing throughput, could be used as a primary retrieval system.

At the time UniTree was not fully stable and the GSFC DAAC was under increasing need

to provide better, more reliable data retrieval and a robust data recovery capability which

did not rely on the data provider to re-send lost data. The choices were either to purchase

a second COTS product or to develop our own secondary data archival system. The data

archive system was intended to mostly store data to archive tapes, track file location and

tape utilization, and to handle both near-line and off-line tapes. Most COTS packages

evaluated were deemed too sophisticated and expensive for the simple set of requirements

that had been identified. Further, many of the COTS HSMs , which were oriented

towards transparent, interactive file retrieval functionality, did not seem to fully meet

these simple requirements. This was particularly true for automatic migration of media
between near-line and off-line storage, and large, batch oriented file/data requests. Our

experiences with the UniTree COTS package also pointed out other problems with
commercial HSMs, such as performance bottlenecks and maintainability issues. For

these reasons, the decision was made that the GSFC DAAC would gain by developing its

own secondary data archive system. The remainder of this section focuses on some of the

criteria that were factored into the secondary archive design.

305

As mentioned above, UniTree was designed around limited, interactive file access which

imposed limitations that were undesirable for a large scale science data center. For

instance, UniTree limits the number of concurrent stage operations (around 100) which

causes maior problems when large number of files are to be staged. Also, the order of

requesting and staging data, along with adequate feedback on both successful and

unsuccessful retrievals, are critical, both to achieve good performance, and to simplify the

media distribution process. For example, a request may need a set of files staged and

then copied to a number of 8mm tapes for distribution in the time order in which the data

was initially produced. The request would best be handled by staging in the time order to

be distributed, particularly if multiple distribution tapes will be needed. Additionally, in

a production environment it is not unusual to have unexpected hardware and software

problems or unexpected workloads that must be rectified manually. Therefore, it is

important to have full control over the archive, letting the system run by itself, bt, t

allowing operators to take control of the system when needed. To provide flexibility and

adaptability to facilities with the needed requirements and resources, HSMs should have

an Application Program Interface (API), which many commercial products either do not

provide or provide with very limited capabilities. It would be highly desirable to have
standardized APIs to facilitate transition to a new HSM when needed.

A key element of a typical data retrieval request submitted at the GSFC DAAC is the

need to stage, in one request, a large number of small files. Some HSMs tend to perforln

poorly when several hundred or thousand of files need to be staged, even if the files

reside on few tapes. Other products put a limit (e.g. 100) on the number of stages that

can be submitted at once, reducing overall performance, requiring substantial software

design to properly handle the staging, and having a large impact on the day to day

operations. On average, most of the files currently archived at the GSFC DAAC are

small (around 1 MB) while data requests range from a single file to several thousand files

at a time, resulting in a high penalty when retrieved from tapes. The overhead of the

pick, mount, load, search and rewind operations is high compared to the read/write

operation which may take only a few seconds for these small files. Consequently, it is

critical to minimize the number of mounts and maximize, whenever possible, the amount

of files read/written per mount. It is therefore desirable to sort the order in which files are

transferred to and from tapes by which tape they are on and their position on the tape.

This may be achieved by knowing the physical location of the files on tapes and then

writing software to request the files in that order. Unfortunately, this information is not

easily available in HSMs such as UniTree. To maximize system throughput, it is also

necessary to keep data transfer rates to/from the storage devices at nearly the limits

imposed by the hardware. Detailed analyses were done on the performance of the VHS

drives under UniTree, and it was shown that data transfer rates were substantially less

inside UniTree than those measured outside UniTree, even with just a single drive

operating [1].

Performance is a key issue in an archive, but other considerations such as interoperability

are equally important. HSM vendors with their own proprietary formats make the

306

transition to another HSM very difficult and expensive. This can have disastrous

consequences if a vendor decided to stop marketing their products or to stop support of a

given hardware device, as was the case for UniTree and the Cygnet .jukeboxes at the
GSFC DAAC. The situation worsens as the size of archives increases dramatically

(Petabytes). The GSFC DAAC also has a requirement to migrate all of its archived data

under the control of the Version () system to the next generation system. By storing the

data in a non-proprietary, generally used format such as tar, migration can be more easily

and quickly accomplished, since all that is required is to physically move the tapes to the

new system. The interoperability of the tapes can be resolved by having one or several

standardized tape format(s). This is difficult to achieve when vendors disagree on the

merits of the formats and have already invested large amount of money in them. Another

approach may be to provide a mechanism for HSMs to recognize and read formats from

various vendors and do this without sacrificing performance. An important feature that is

not always available is the ability to reconstruct the data base from the data itself. For

instance, UniTree data is useless without the UniTree data base. These problems have

been recognized and an Information and Image Management International (AIIM) File

Level Metadata for Portability of Sequential Storage Media group has been formed to

address some of these issues. This group met for the first time in April 1996, in Chicago,

Illinois.

Faced with storage requirements growing exponentially and limited budget, it may be

necessary to store data off-line. This solution is even more attractive in a data center

where many tapes are seldom requested. This feature seems to be ignored or is limited at

best with some HSMs. It is not sufficient to indicate that the tape is off-line. At a

minimum the physical location of each off-line media should be known by the HSM and

operators should be prompted to transfer media between near-line and off-line in an
efficient manner. This should be viewed as another level of hierarchy with full

functionality, and statistics should be made available.

A key issue in any Data Center is the data integrity and the data preservation. To ensure

the highest quality for all data ingested and distributed to the users, it is important to

capture, report, and react to errors in a usable way. These errors could occur with the

media, the drives, the disks, or be related to some software problems. Even soft media

errors may need to be monitored to identify archive media degradation. Data corruption

needs to be automatically detectable through methods such as computation and

comparison of file checksums upon all archival and retrieval requests. In spite of being

critical, errors are not always provided with enough information, are often listed in a

cryptic form, are difficult to locate in log files, or are simply not reported. Programs

requesting the data are often not provided with adequate feedback to respond to both

critical (e.g., hard media) failure and non-critical (e.g. soft media) failures. This creates

confusion, requires a high level of expertise, and can have a detrimental impact on day to

day operations. Error detection is not sufficient in itself and "smart" algorithms should be

in place to take appropriate actions after errors are discovered. For example, a

configurable limit should be set pertaining to the number of retries to read or search for a

file. Another example may be to not automatically mount new media when an

unrecoverable write error is detected, since the problem could be due to a bad drive and

307

could result in numerous new tapes being discarded. Similar problems can occur with

WORM optical media where a failure due to a bad drive is incorrectly interpreted to be a

media failure and a new media is requested. When the request again fails, another new

media is requested, and so on, until operators notice the problem and shut-down the

operation. This can cause the loss of many platters and requires extensive manual

intervention to rectify this situation. These examples illustrate that the hard-coded error

handling policies implemented for general, success-oriented operations do not always

function well within a large, operational system. These policies are easily correctable and

changeable. Changing policies and requirements may be a trivial task to implement

with an in-house system, but may be much more difficult to integrate with a commercial

package.

When dealing with very large science data centers (Petabytes), scalability is a major

issue. An HSM should be designed to scale not only with the volume but also with the

number of files being archived. This may require distribution of the software as well as

the hardware. Implementation of a Unix file system or a virtual disk system is not

regarded as a viable solution because of its limitations. There is a limit in the operating
system on the number of concurrent open calls. The name server in an HSM can also

become a bottleneck with very large number of files and some of the modules composing

a data archive system may have to be distributed over several machines to spread the load

more evenly.

Purchasing a commercial product such as an HSM provides many advantages. On the

other hand, there may be major drawbacks that should be diligently evaluated before

making any decision regarding the need for a COTS product versus an in-house product.

One major problem experienced at the GSFC DAAC was the integration of UniTree with

custom archive and distribution software. The task was difficult, time consuming,

expensive to implement, and caused long delays in the delivery of the whole system. One

solution was to request the vendor to incorporate the desired functionality in a new

release. However, these functions may be too specific to have market value; or when

there is interest to other users, it usually takes months, if not years, before design,

integration and release. Another approach is to contract the integrator to develop specific

functions that are not part of the core commercial product. Besides the length of time to

set-up the contract, provide the requirements, and then design, write, test and integrate the

functions, there is a high risk involved in tailoring a commercial product to meet specific

needs, as each new release of the product may require new customized development

resulting in a high cost. All together, the process can be extremely lengthy in time and

frustrating in having to write work-around software or procedures to try and handle the

situation while waiting for the vendor to react. HSMs are rather complex systems, built

for specific, well-defined systems, and are not without flaws. Some of these bugs may

seriously limit how the system can be used and it may take weeks or months to obtain a

patch to fix the problem. While requiring in-house resources and expertise, there is more

control with programs developed in-house. Bugs can usually be rectified more quickly

and decisions can be made internally to prioritize them. Moreover, the experience we had

with UniTree and the discussion we had with other colleagues tend to confirm that HSMs

308

have not yet reachedthe stage of maturity found in products such as data base
managementsystems.

Part of theoriginal charterof theGSFC Version0 DAAC wasto testEOSDISconcepts
and standards.Experimentation with variousHSM strategiesand the developmentof

Archer as a possible alternative to commercial HSM products fit within that charter.

Having an in-house product would also increase the ability to add new media types,

which usually takes place on a longer time scale with COTS. The high cost of

commercial HSMs is another consideration that cannot be ignored and contributed

heavily in the decision to develop Archer. This is even more important in a distributed

environment where a home-grown HSM can be freely redistributed whereas a COTS has

to be licensed for multiple platforms and sites. In addition to the expensive purchase

price, there is usually a high maintenance cost and some integration development costs

that makes commercial HSM solution less attractive. While the preference is to use a

commercial product, in some cases no commercial product can satisfy specific and

unique needs, and the developer must rely too much on companies whose goals are

oriented towards slightly different requirements or functions. A key to the usability of a

COTS product is whether its main functionality matches or just resembles one's needs. If

just resembling one's needs, as was the case of COTS HSM packages and the science

data needs of the GSFC DAAC, then attempting to either fit the COTS package intc_ a

slightly different functionality or assuming new releases to include the requircd

functionality can be costly in time, resources, maintainability, and usability. These are

some of the arguments and justifications that led to the design and development of a

secondary archive system at the GSFC DAAC. One can hope that HSMs will become, in

the near future, mature and flexible products that satisfy a vast and varied quantity of

customers at a reasonable price.

Design of the secondary archive

Archer is a hierarchical storage management system that was designed to satisfy the

requirements specified in the previous section. Files can reside in a cache, be robotically

accessible, or be on a tape off-line. Users do not need to know the physical location of

the files (data transparency), however, this information is easily and rapidly accessible

through an API or by querying the Oracle data base which is used to keep track of file

locations. The use of a relational data base facilitated and expedited the development of

the system and provided a journal file to insure integrity of the archive database.

Migration between cache and tape is automated and data can be stored and organized by

families. For instance, a family can represent all files that belong to a specific product

and level. The Archer file names are similar to the ones used in Unix, yet there is no

implementation of a Unix file system. Consequently, commands such as open/close are

not available and others, such as ls must be simulated through database SQL commands

(e.g., and "als" command is provided to simulate Is). Files are simply requested to be

stored or retrieved to/from the archive via PUT and GET operations. Multiple users can

be serviced simultaneously and the client/server architecture has been designed to permit

309

a distribution of the various servers among different machines to make the system
scalable.

Archer file names have two parts. The first part identifies the directory to which a file

belongs. The second part identifies the file. Both the directory and the file part can be

any arbitrary string of characters (e.g. "/" are not required) but by convention, the names

have been chosen to be consistent with Unix. Each directory is assigned to a family when

created and is stored in an Oracle database table. The first part of a file name must

completely match one the Archer directories, the part remaining is considered the file
name.

The architecture of Archer is illustrated in Fig. 3. The main components of the system
are defined as:

client interface (API): This is a series of C-callable entry points through which requests

are originated. A request can be made to archive files, retrieve files, list files, delete files,

list directories, list families, add tapes, list tapes, delete tapes, and flush families. All

client interfaces communicate with a single archive server process.

Files can archived and retrieved in any size batch using either a synchronous or

asynchronous method. The client is responsible for copying files out of cache during a

file retrieval request. Command-line wrappers exist around all API functions so that the
Archer internals can be accessed from the shell.

archive server: Only one archive server exists per archive. The archive server supports

multiple file servers, and is responsible for directing message traffic between client

processes and file servers or rejecting any requests which contain invalid information.

The archive server can run on any machine in the archive.

file servers: Each file server is responsible for managing requests and file tables for a set

of families in the archive. The file server manages cache space for all requests and

verifies that the requests are satisfied. Each file server can manage multiple cache

directories. Each file server supports multiple storage managers. For performance

reasons, file servers may run on different machines in the archive.

copy server: A copy server is a small process which receives requests from the file

servers to copy files into cache for archive requests. The copy server can copy a

configurable number of files into cache in parallel. The copy server exists to minimize

the overhead involved with forking processes to copy files in parallel. One copy server
runs on each machine in the archive.

storage managers: Each storage manager is assigned a subset of the file server's families.

Each may manage a different media type. The storage manager is responsible for

managing and ordering the storage/retrieval of requests to/from tape. Each storage

manager supports multiple storage servers, all of which must contain the same media

type.

310

storage servers: Each storage server controls an individual storage device whether it is a

single drive, a stacker, or a more complex multiple drive robotic system. The storage

server is responsible for all activities involved in the storage/retrieval of files to/from

tape. These activities include the loading/unloading of tapes to/from drives, tape

positioning, tape verification, and the reading/writing of files to/from tape. Each type of

storage server has its own type of ACE control display.

Archive Control Environment (ACE):

This is a GUI interface through which the operator and the archive interact. The ACE

interface displays the status of the storage server and the device it is monitoring. This

status includes whether the device is on-line, off-line, reading, writing, or idle, and tile

names of the tapes in the slots of the device, if applicable.

Through this interface, an operator may be notified of various events (e.g. system restarts,

tape write errors), some of which may require a response. An operator may be prompled

to mount a series of tapes in various slots of the device, or they may issue a request to

load tapes manually.

311

I

Machine A _ ii

I

\ I

\\ I

i
I

I

I

\ I
\

\

B I

X I

\ I

Fig 3 Archer Architecture

PUT _n_t t_ET scenarios

In a typical PUT scenario, the client sends a request to the archive server to archive a

file(s) to a specific family. The archive server directs the request to the appropriate file

server. The file server allocates disk space in the cache and sends a message to the copy

server to transfer the file(s) into the cache. After the file is copied to cache, a message is

sent back through the system, informing the client of the cache transfer status. In a

successful cache transfer, a message is sent to the appropriate storage manager. The

storage manager receives and queues requests of successful cache transfers and waits for

a pre-defined number of files (by family) to be staged in the cache before submitting a

request to the storage server to copy the files to tapes. Finally, the storage server mounts

the right tape and writes the data to it.

312

In a typical GET scenario,the client sendsthe requestto the archive server which
forwards it to the appropriatefile server. The file serveridentifieswhether the file(s)
residesin thecache.Whenthefile is not in thecache,thefile serverallocatesdisk space
in the cacheandsendsa messageto the storagemanagerto retrievethe file. When the
storagemanagerdeterminesthe time is right to fetch the file, a messageis sent to the
appropriatestorageserver,the fight tapeis mounted,and thefile is readfrom tape into
thecache.A messageis thentransmittedbackthroughthesysteminforming theclient of
this transfer. To avoidauthorizationproblemstheclient is responsiblefor copyingdata
from thecacheto its location.

Archer storage format

In designing the Archer storage format, the option of using a proprietary format such as

the one implemented in UniTree was rejected due to concerns with portability, and

flexibility. Another important consideration was the ability to reconstruct the metadata

directly from tape without the need of the database. This feature can be useful in the

event of a disaster and can also facilitate the migration to another archive system which

may not have access to the database system. There is no official standard archive format

available but tar is a de-facto standard with Unix and other platforms, and for this reason

was selected as the best candidate to satisfy our requirements. As mentioned above, the

GSFC DAAC average file size (at the current time) is relatively small (1 MB) and,

therefore, saving each file in a separate tar format would result in a heavy performance

and space penalty. To alleviate this problem, groups of files are saved in a tar file called

a "save set" prior to being migrated to tape. The number of files to tar together is usually

selected so that a "save set" is around 50-100 MB for a 1-2 MB/s tape drive. The size of

the save set is configurable for different media and data types (i.e., families) in order to

best utilize the performance characteristic of the tape drives based on the file

characteristics of the data. When a file is requested from an Archer tape, the whole save

set where the file resides is read from tape and untared on the fly. Reading a save set

takes longer than reading a single file but this penalty is small compared to the high

overhead associated with the mount/load/search times. In addition, since the data requests

are based on high quantity, batch file retrievals, neither single file access (such as

provided by UniTree) or, the even more granular, block oriented access (such as provided

in the AMASS HSM system) provide any benefit, and can, in fact ,hurt overall

performance for this type of system. The Archer storage format is illustrated in Fig 4.

Error detection and recovery_

From the beginning of the design of Archer, special care was given to error detection and

recovery. This is critical not only to minimize impact on day to day operations but also

to insure the integrity of the data archived and distributed at the GSFC DAAC. The first

type of errors to examine is media failure. When a tape write error is detected, several

pre-assigned and operator configurable number of attempts are executed. Continued

failure will cause an operator prompt to occur with the option to continue retrying the

operation, to ignore the requested operation, or to retry the operation on a different tape in

313

the caseof a hardwrite error. If theoperatorchoosesto ignore therequestedoperation,
he/shecan then take the suspecteddrive off-line to avoid continuousoperatorprompts
resultingfrom this write error. With atapereadfailure,the readoperationis retried for
anoperatorconfigurablenumberof times,thenmarkedasfailed. Operatorsarenotified
on their terminalsof themediaproblems.

tar

file

ASCII

file

,avosotIsave etI I avo, t
I I I

f::lum l,I.... °I
medium_name: XXX

saveset_num: 2

familyname: XXX

file 1: familydirectory file_name

file 2: familydirectory file_name

File N: family_directory filename

saveset

N+I

\
\

tar

file

tar

volume

I label

Fig 4 Archer tape format

Performance

tar

volume

nanqe

tape name

saveset number

identical in

every saveset

on tape

One of the main considerations in the design of Archer was to develop a system with

good performance. The emphasis was on the gross throughput of groups of related files

as opposed to single-file turn around time. In order to achieve this objective several key

features have been implemented. As mentioned above, files are grouped in save sets,

improving the performance of a system with small files. To increase the hit cache ratio, a

cache management algorithm has been developed on the file server with the capability to

easily include new scheduling algorithms if desired. Improved log messages have also

been designed to track the status of each file (examples: staged and purged) in the system

and to monitor and generate performance statistics. New files ingested in the system are

queued in the cache and copied to tape only after a pre-assigned volume of data is

314

reached.Thisallowsalargevolumeof datato becopiedwith asingle tapemount. Files
requestedarefirst searchedfor in thecache.Whenthefiles arenot locatedin thecache,
Archer will sort files in the orderthey arephysically storedon tapes,to minimize the
overheaddueto file positioningon thetapeandthemountinganddismountingof tapes.
Archer was developed with a multi-threaded client/server architecture and multi-threaded

tape I/O architecture that provides efficient streaming of tape drives. The DLT tape

drives have been tested to read/write close to the peak transfer rates advertised by

vendors. Having a large database that contains the logical to physical relationship

provides easy to utilize information but, due to the size of the files (millions) and the need

to continuously access the table, performance is adversely affected. To partly alleviate

this problem, the first part of the file name maps to the family name, which allows a

quick identification of the table to which the file belongs. As mentioned in the Status and

Future Work Section, future versions of Archer will be independent of a relational

database system.

Operational concepts

One of the goals of Archer was to facilitate the operational activities at the GSFC DAAC

as well as the jobs performed by operators. One of the features of ACE (utilizing a

graphical Tcl/Tk interface) is to provide a message button that highlights problems

encountered. For example ACE (see Fig. 3) may list a tape write error . Archer

processes are carefully monitored by an overseer process and if a problem arises, a

message is displayed to indicate if the processes exited normally, abnormally, or failed

due to a signal. In the event of failure, the archive is automatically restarted and the

operator is notified.

Table 2 summarizes the issues discussed above.

315

i

Issues

Table 2:

Good performance

Interoperability

Large requests of small files

Archive management
Flexible

Capture and monitor errors

Error recovery

Scalable system

Administration

Kept simple

Hierarchical storage management

Summary of Archer Features and Functions

Features

-low overhead to sustain operation at near tape speed
- minimize number of mounts

- maximize number of files requested from tapes

- multi-threaded tape I/O
- multi-threaded client services

- hierarchical storage (disk cache, magnetic tape, off-line)
!- sort file read order by tape

- allow large batch reads for improved sorting

- no proprietary tape format (use tar)

- open system

- self contained (contains data & metadata) (HDF)

- recreate metadata dbms from reading tapes
- save set

- support on-line, near-line, and off-line media
- API

-configurable parameters (based on data type or families, media,

s_,stem, etc.).
- tape drive
- media

- disk cache failure

- ACE display/monitor s_,stem
- before file is cached

- before migration

- during migration
- distributed H/W

- distributed S/W

- distributed storage devices
- reliable

- archive multiple copies
- collect statistics

- errors

- performance

- facilitate migration from V0 to V1

- reduce dependencies on vendors

- minimum coupling with DADS software

- simplify integration

- simplify exportation
- integrity

- journal file

- support operator assisted off-line tape access

- does not implement a Unix file system

- file name similar to Unix file system

- simple synchronous and asynchronous put/get user interface
- retrieval is by family and file identifier
- COTS software to handle archive database

- files can be in cache, on tape, or off-line

- identical storage and retrieval operations

- automatic migration from cache to tape

316

Status and Future work

Since its delivery in Fall 1995, Archer Version 4.4 has been used on several occasions t(_

recover lost files. Based on random audits, no file loss from Archer has yet been detected

and Archer outperforms UniTree in archive operations, especially with large batches.

There have been some operational problems. For example, some unexpected tape errors

have occasionally caused the Archer system to hang. Also, only one single cache disk is

currently supported and file and tape status is available only through SQL database

queries.

The next build of Archer, scheduled to be operational in August 1996, should improve

the overall performance through better internal scheduling of database operations.

Multiple cache support has been added. Error recovery has been modified to prompt

operators when several tape retries failed and to provide a choice of options. A global

process monitors Archer and alerts operators to any problem detected.

Several other NASA groups have expressed an interest in Archer and there are plans to

enhance Archer to be more like a COTS package with full documentation and its own

configuration management (independent of the DADS development). The two main

features envisioned are to remove Archer dependency on Oracle by maintaining the

needed information internally and in disk files, and to improve the storage manager and

storage server to better support new robotic devices and drives.

Conclusion

The GSFC DAAC has successfully designed and implemented a secondary archive

system with a staff of one to three programmers over a fifteen month period. The initial

release was operating after only seven months of design, development and testing.

Though still in its infancy, Archer is satisfying the most pressing needs of the GSFC
DAAC.

While Archer provides only a subset of the functions available with COTS software like

UniTree, it supports migration between near-line and off-line media and offers good

performance and flexibility. By selecting tar as tape format, Archer makes data more

portable between Unix systems.

References

[1] Architecture and Evolution of Goddard Space Flight Center Distributed Active

Archive Center, Jean-Jacques Bedet, Wayne Rosen, Mark Sherman, Hughes STX; Phil

Pease, NASA/Goddard Space Flight Center, NASA Conference Publication 3295, March

28-30, 1995.

317

